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The utility of genetic neural network (GNN) to obtain quantitative structure-activity
relationships (QSAR) from molecular similarity matrices is described. In this application, the
corticosteroid-binding globulin (CBG) binding affinity of the well-known steroid data set is
examined. Excellent predictivity can be obtained through the use of either electrostatic or
shape properties alone. Statistical validation using a standard randomization test indicates
that the results are not due to chance correlations. Application of GNN on the combined
electrostatic and shape matrix produces a six-descriptor model with a cross-validated r2 value
of 0.94. The model is superior to those obtained from partial least-squares and genetic
regressions, and it also compares favorably with the results for the same data set from other
established 3D QSAR methods. The theoretical basis for the use of molecular similarity in
QSAR is discussed.

I. Introduction

The use of three-dimensional (3D) molecular fields in
quantitative structure-activity relationships (QSAR)
has usually been based on the construction of a 3D grid
containing known drug molecules, whose interactions
with certain probes are evaluated at regularly spaced
points on the grid. Most commonly the electrostatic and
steric attributes of the known ligands and, by extrapola-
tion, the putative receptor environments are investi-
gated, though other properties can be studied as well.
Both the GRID program1 and the comparative molecular
field analysis (CoMFA) package2 have been used for this
purpose. By use of multivariate partial least-squares
(PLS) method,3 QSARs have been derived from the field
values, which replace the standard descriptors of 2D
QSAR. A growing number of applications based on this
method has been reported.4,5 The approach is the
leading 3D QSAR method in the field of drug design.
An alternative way to utilize the 3D molecular fields

is to introduce the concept of molecular similarity.6-8

The molecular similarity concept was first proposed by
Carbó,9 who defined the similarity between two mol-
ecules in terms of their electron density distributions
(eq 1), where PA and PB indicate the property of interest
for molecule A and B, respectively; in eq 1, PA and PB
represent electron density distributions. Hodgkin and
Richards proposed an alternative index, the so-called
Hodgkin index,10 that is more appropriate for properties
such as electrostatic potentials (eq 2).11 Recently new
electrostatic similarity indices, the linear and exponen-
tial indices, have been suggested (eqs 3 and 4).11 In the
original formulation of these indices, the property (PA
and PB in the equations) of interest was the electron
density, but it has been extended to electrostatic po-
tentials and electric fields. For comparison of the shape
of two molecules, the Meyer formula has been used (eq
5).12 This formula is a modified form of the Carbó index;

it is the quotient of the number of grid points that are
inside the common volume of the two molecules (UAB)
and the geometric mean of the number of grid points
inside their individual molecular volumes (TA and TB).
Although it is possible, of course, to define molecular
similarity in the context of other global, topological, or
even substituent-based parameters,8 the term “molec-
ular similarity” used in this and the companion study13
refers to comparisons based on spatial fields, as defined
by eqs 1-5.

To build a similarity matrix (SM), each compound in
the data set is compared to all the others on the basis
of the values of the chosen property at the grid points.14
The use of such matrices is an efficient means of
dimensionality reduction of the raw data. For example,
a typical CoMFA analysis may use, depending upon the
size of the molecules and the resolution of the grid, on
the order of 103 grid points. Performing PLS on such a
large data matrix tends to be slow.15 The use of
molecular similarity compresses the large raw data
matrix into a very compact SM, whose dimension
depends only on the number of molecules.7,8 PLS can
be applied to this SM to derive QSARs. Several SM/
PLS studies have been reported, and some promising
results were obtained for standard data sets.14,16-19
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It has been shown that QSARs based on a selection
of a few key variables can be superior than that obtained
by performing PLS on all of the variables.8,20 Encour-
aged by the success of recent applications of genetic
neural networks (GNN) to obtaining QSARs from
conventional descriptors,21,22 we have applied the GNN
methodology to the analysis of SM. It appeared likely
that the GNN can lead to better optimized QSARs than
the traditional linear PLS regression. This may be true
because the genetic algorithm can select the most
relevant variables and the neural network offers a
model-free nonlinear mapping capability to optimize
their use.
In this study we propose a QSAR method that

analyzes a SM with a GNN. The method is tested and
validated with the well-known corticosteroid-binding
globulin (CBG) steroid data set. Standard substituent-
based analysis is inappropriate for this data set because
structural modifications occur at many positions, and
furthermore the variety of substitutions at a given
position is often limited. This inadequacy, in addition
to a relatively uncomplicated molecular alignment,
makes a 3D-based method particularly useful in the
structure-activity analysis of the data. In fact, since
the original CoMFA study,2 this data set has become a
standard in testing novel 3D QSAR methods.14,16,23-30

The influence of the various SM/GNN parameters on
the quality of the QSAR models is investigated. The
statistical significance of the final QSARs is evaluated.
A comparison of the SM/GNN results with those ob-
tained from other approaches is made.
Section II describes the method. The results are

presented and discussed in section III. Section IV
outlines the conclusions.

II. Method
Scheme 1 is a schematic diagram showing the various stages

of the SM/GNN QSAR development. The specific details are
described in the following subsections.
Model Building. The binding affinity (log K) of the 31

steroids (Chart 1) with CBG is shown in Table 1. The
coordinates were obtained via anonymous ftp from the Gasteiger
group,31 which recently reported a QSAR study based on
neural network and autocorrelation vectors on molecular
surface properties as descriptors for this data set.27 Although
their method does not require molecular alignment, the
molecular coordinates released by them had the steroidic
backbones appropriately aligned. Neither realignment of the
structures nor modification of the steroid coordinates was
necessary, which made possible a direct comparison with their
results. Unless otherwise specified, the Mulliken charges were
derived from MOPAC632 within the Cerius2 modeling environ-
ment,33 using the AM1 Hamiltonians in a single-point energy
calculation.
Molecular Field and Molecular Similarity Calcula-

tions. Drug-receptor interactions are often separated into
electrostatic and steric components. In light of this, two
different similarity matrices, that based on the electrostatic
and that based on the shape,14 were used in this investigation.
An alternative steric similarity matrix based on a van der
Waals (vdW) potential was compared with the shape matrix.
Unless otherwise stated the following protocol was used.

The electrostatic similarity matrix (ESM) was derived from
the Hodgkin formulation (eq 2). The electrostatic potentials
at the grid points were calculated using a unit positive charge
probe with a vacuum dielectric constant (ε ) 1.0). Further-
more, electrostatic potentials greater than +5.0 kcal/mol or
less than -5.0 kcal/mol were truncated to the cutoff values.34
A 20 × 30 × 20 Å3 rectilinear box was constructed so that it
would extend beyond the atomic coordinates of the entire data

set by at least 6 Å on each side. A 2.0-Å grid spacing, a value
recommended by Good et al. in a previous SM/PLS study,16
was employed. To avoid singularities for the electrostatic
potential at grid points near the atomic positions, the points
within the van der Waals surface35 of the molecule had their
electrostatic potentials set to zero.11
The shape field is a binary measure that encodes whether

a grid point is within or outside the van der Waals surfaces of
the molecules. Since all steric grid points contribute zero to
the field beyond the molecular surfaces, a smaller rectilinear
box (12 × 20 × 11 Å3) was sufficient in the calculation of the
shape similarity index. A grid spacing of 0.5 Å, as suggested
by Good et al., was employed.16 The Meyer formula (eq 5) was
used to compute the shape similarity matrix (SSM).12
The parameters for the vdW interaction energies were based

on universal force field (UFF).36 A comparison of UFF and
Merck molecular force field (MMFF)37-41 showed that the vdW
energies derived from the two force fields are highly correlated
(r2 ) 0.92), though the UFF values are generally larger. The
fields were generated using a Csp3 probe in a 20 × 30 × 20 Å3

grid (same size as the electrostatic grid) with a 0.5-Å grid
spacing, and a (5.0 kcal/mol truncation cutoff was applied.
The vdW similarity matrix (VSM) was calculated according
to the Carbó formula (eq 2).
Genetic Neural Networks. In GNN, selection of descrip-

tors is made using a genetic algorithm42 and correlation of

Scheme 1. Schematic Diagram for the Construction of
a SM/GNN QSAR Model (See Method)
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biological activities with these descriptors is performed by a
neural network.43 Unless otherwise stated a 6-2-1 scaled
conjugate gradient (SCG) neural network,44 which contained
17 adjustable weights, was used. Empirical studies suggested
that with this number of parameters, the neural network
would be able to generalize a data set containing 31 com-
pounds. Larger networks were less desirable because of an
increasing risk of data overfitting.45-47 The standard GNN
protocol described previously was used in all simulations.22 The
protocol was designed to maximize the efficiency of GNN
simulation by taking the computationally intensive cross-

validation procedure only during the final round of simulation.
It had been demonstrated that this protocol generated results
comparable to a genuine cross-validated GNN simulation.22
The added efficiency makes possible a more extensive inves-
tigation of the data set. In the current work 200 individuals
and 50 evolutionary programming20,22,48 genetic reproduction
cycles were used. The correlation coefficients of the training
set were used as the fitness function for the first 50 cycles. In
the final cycle, leave-one-out cross-validations were performed,
and the cross-validated correlation coefficients became the
fitness criteria to determine the final ranking of the GNN

Chart 1. Steroid Data Set
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models.49 A typical GNN simulation for the steroid data set
required approximately 1 CPU hour on a 175-MHz R4400
Silicon Graphics Indigo2 workstation with this protocol.

III. Results

Construction of a Standard Comparison Set.
The electrostatic and the shape SMs (Table 2) for the
31 CBG-binding steroids were obtained using the pro-
tocol outlined in the Method section. Six-descriptor
GNN QSARs were built from each of the matrices. To
investigate the variability of the results obtained by the
GNN method, the two sets of simulations (ESM/GNN
and SSM/GNN) were repeated 50 times using different
random initial seeds. In all cases, they led to QSARs
that were excellent in fitting and predicting the biologi-
cal data. For the ESM, the correlation coefficient (r2trn)
of the fit of the data was 0.951 ( 0.004; more impor-
tantly the cross-validated correlation coefficient (q2)
value was 0.903 ( 0.007. The very small standard
deviations indicated good convergence behavior, despite
a small variation of descriptor selections that was
observed in the multiple simulations. Each individual
model shared, on average, four common descriptors with
the others. Good results were also obtained with SSM/
GNN. The 50 simulations yielded an average r2trn value
of 0.885 ( 0.003 and a q2 value of 0.825 ( 0.013. The
statistical variables obtained from the two sets of
benchmarking simulations served as a standard for
comparison in later studies.
Validation. It is important that any new QSAR

method be extensively validated. If this is not done,
there is the possibility that the results may be due to
chance correlation.47,50 Because the GNN selects only
a few variables in the final models, there is the pos-
sibility that some combination of input variables gives
an apparently excellent fit or even good predictivity even
though the correlation between the input descriptors
and biological responses is not meaningful. The same
issue has been discussed by the authors of another
variable selection routine, GOLPE,15 and we use a
similar approach to show that the potential problem
associated with chance correlation is minimal. We have
adopted the randomization test15,21,22,25,51 that has
become a standard for QSAR validation because it
provides an estimate of chance correlation. In this
technique, the elements of the response vector (here, the
binding affinity with CBG) are shuffled by 100 random
exchanges in their positions. This is an efficient way
to randomize the output values without altering the
variance. Given a randomized data set, the same QSAR
technique is applied, i.e., using GNN to correlate the
real input data with the randomly scrambled activity.
The whole procedure is performed on many different

scrambled data sets. If some apparently highly predic-
tive QSARs are still obtained with randomized data, the
significance of the real QSAR is suspect. We carried
out the 50 ESM/GNN and 50 SSM/GNN simulations
with data sets containing different randomized activity
vectors. The results are shown in Figure 1, where the
50 artificial QSARs are displayed alongside the 50 true
QSARs based on their correlation coefficients. It is
evident from the plots that the points corresponding to
the real QSARs are well-separated from the random
cases. Both the fit of the data (r2trn) and the cross-
validations statistics (q2 ) 0.134 ( 0.229 and 0.202 (
0.137 for randomized ESM and SSM) from the artificial
QSAR models were much lower than those of the real
QSARs. This confirms that the predictive quality of the
GNN models is meaningful.
Some researchers have raised a question on the cross-

validation process used in the SM/PLS studies.15,23
Because similarity matrices are symmetric, there is a
concern that even though the input vector associated
with the cross-validated compound (i.e., the row repre-
senting the similarity of that compound with the others)
has been removed from the matrix, the information is
still present in the corresponding data column (i.e., the
column containing the similarity measures of every
compound with the cross-validated one). However, we
do not think this is a problem in SM/GNN. First, after
variable selection with the genetic algorithm, the data
matrix that is examined by the neural network is no
longer symmetric. Only when a compound that provides
the similarity descriptor is being cross-validated can the
similarity elements in the removed row be found at some
random positions in the descriptor column correspond-
ing to the compound. Further, a very important aspect
of these “mirrored” elements is that they come from the
input matrix but not the output values (i.e., activities)
that cross-validation attempts to predict. There is no
reason for this to cause a bias in the QSAR so that better
(or worse) predictions are obtained for the compounds
which provided the similarity descriptors, relative to the
other compounds. To verify this, the following simula-
tions were performed. Each of the 31 steroids in the
data set was used in turn to provide electrostatic or
shape similarity description, and an individual QSAR
was constructed using a 1-2-1 neural network for every
SM. We then calculated the cross-validated prediction
error for every compound in each model and determined
the percentage of compounds that had higher prediction
error than the one that provided the similarity descrip-
tor. The simulation results showed that the percentage
of cases with higher prediction errors (52%) than that
of the similarity template is about the same as those
with lower margin of prediction errors (48%).
Variations of Parameters for Electrostatic SM/

GNN QSAR. Since there are a number of user-defined
parameters involved in this method, a systematic study
was made to investigate the sensitivity of the results
to changes in each parameter. The parameters inves-
tigated were (i) how the electrostatic potential was
calculated, which included the use of different types of
atomic charges, truncation cutoffs, and dielectric con-
stants; (ii) types of similarity indices being used; (iii)
the grid parameters including its spacing, size, or
location; and (iv) the number of descriptors in the GNN
calculation. For each test, three GNN simulations were

Table 1. CBG Binding Affinity Data27

no. log K no. log K no. log K

1 6.279 11 7.881 21 6.724
2 5.000 12 5.919 22 7.512
3 5.000 13 5.000 23 7.553
4 5.763 14 5.000 24 6.779
5 5.613 15 5.000 25 7.200
6 7.881 16 5.225 26 6.144
7 7.881 17 5.225 27 6.247
8 6.892 18 5.000 28 7.120
9 5.000 19 7.380 29 6.817
10 7.653 20 7.740 30 7.688

31 5.797
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made to estimate the statistical variance. The average
and standard deviation of the cross-validated correlation
coefficients (q2) are reported alongside with the standard
comparison set that was obtained from the earlier
validation run (see above).
(i) Electrostatic Potential Calculation. (a) Effect

of Atomic Charges. AM1 Mulliken charges, which
required a few CPU seconds to calculate on a R4400
Silicon Graphics workstation, were used for electrostat-
ics calculation in the standard comparison set. In the
validation, four other types of charging algorithms were
tried, all of which were available within the Cerius2
modeling environment.33 They were the AM1 ESP-fitted
charges from MOPAC6,32 the Gasteiger charges,52 the
charge equilibration (QEq) charges,53 and the MMFF
charges.37-41 Table 3a shows the cross-validated results
for the various types of charges. The AM1 Mulliken
charges and the QEq charges give similar results, which
is consistent with the fact that the atomic charges
calculated by the two algorithms are highly correlated
(r2 ) 0.88; Table 4a). The use of ESP-fitted charges,
which are more different from the other four charge
types, leads to a small decrease in predictivity. The
Gasteiger and the MMFF charges, the second most
correlated pair (r2 ) 0.84), produce the worst results in
this case. On the basis of this comparison, the AM1

Mulliken charges set appears to be a good balance
between computational efficiency and accuracy in the
derivation of atomic charges for the purpose of obtaining
electrostatic similarity descriptors. The ESP-fitted
charges, which took more than 1000 s to generate, are
less desirable due to their high computational cost. The
fact that the QEq algorithm derives good charges for
similarity calculations is also significant. Because the
charges can be obtained very rapidly (estimated at 20
compounds/s), they are well-suited to problems that

Figure 1. Scatter plot for q2 against r2trn for the real QSAR
(+) and those with randomized activity values (O): (a)
electrostatic similarity matrix; (b) shape similarity matrix.

Table 3. Statistical Data for GNN QSARs Derived from
Electrostatic Similarity Matrices

q2 q2

(a) Charge
AM1/Mullikena 0.903 ( 0.007 QEq 0.913 ( 0.021
AM1/ESP 0.841 ( 0.012 MMFF 0.819 ( 0.032
Gasteiger 0.801 ( 0.010

(b) Truncation
(0.25 0.843 ( 0.005 (10 0.913 ( 0.005
(0.50 0.871 ( 0.004 (15 0.906 ( 0.006
(1 0.869 ( 0.005 (20 0.911 ( 0.004
(2 0.876 ( 0.004 (25 0.903 ( 0.006
(3 0.882 ( 0.003 none 0.903 ( 0.007
(5a 0.903 ( 0.007

(c) Dielectric
1a 0.903 ( 0.007 40 0.907 ( 0.005
4 0.908 ( 0.008 80 0.903 ( 0.007

(d) Similarity Index
Hodgkina 0.903 ( 0.007 exponential 0.914 ( 0.009
Carbó 0.886 ( 0.014 linear 0.898 ( 0.007

(e) Grid Spacing
0.5 0.890 ( 0.004 3 0.874 ( 0.006
1 0.895 ( 0.006 4 0.848 ( 0.011
2a 0.903 ( 0.007

(f) Grid Size
-2 0.832 ( 0.004 +6a 0.903 ( 0.007
0 0.903 ( 0.007 +8 0.899 ( 0.019
+2 0.907 ( 0.008 +10 0.900 ( 0.012
+4 0.901 ( 0.006

(g) Grid Shift
+x 0.899 ( 0.005 -x 0.895 ( 0.007
+y 0.898 ( 0.010 -y 0.894 ( 0.008
+z 0.890 ( 0.003 -z 0.893 ( 0.006
standarda 0.903 ( 0.007

(h) Number of Descriptors
1 0.677 ( 0.010 11 0.883 ( 0.010
2 0.768 ( 0.009 12 0.859 ( 0.022
3 0.851 ( 0.002 13 0.858 ( 0.008
4 0.888 ( 0.007 14 0.852 ( 0.016
5 0.896 ( 0.003 16 0.857 ( 0.024
6a 0.903 ( 0.007 18 0.840 ( 0.005
7 0.899 ( 0.010 20 0.836 ( 0.011
8 0.899 ( 0.011 25 0.824 ( 0.007
9 0.897 ( 0.007 31 0.712 ( 0.014
10 0.879 ( 0.016

a Standard comparison set.

Table 4. Correlation Coefficients (r2)

(a) Among Different Types of Atomic Charges

AM1/ESP Gasteiger QEq MMFF

AM1/Mulliken 0.61 0.61 0.88 0.36
AM1/ESP 0.26 0.55 0.13
Gasteiger 0.76 0.84
QEq 0.46

(b) Among Different Types of Similarity Indices

Carbó linear exponential

Hodgkin 0.99 0.89 0.80
Carbó 0.86 0.75
linear 0.98
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require the handling of a vast number of structures, for
example, in database searches or conformational analy-
sis for compounds with many degrees of freedom.
(b) Truncation of Electrostatic Potential. A

cutoff is often used in the generation of electrostatic
potential fields.14,16 This is done to prevent the similar-
ity index from being dominated by a few grid points with
a large magnitude for the electrostatic potential. Any
value that was beyond some predefined cutoff was set
to the maximum or minimum values. Table 3b and
Figure 2 show the cross-validated statistics for simula-
tions performed with different values for the cutoff. Use
of a very small value clearly degrades the results.
Comparison of the results with cutoffs larger than (5.0
kcal/mol indicates that there is little effect for the
present case. This is not surprising since the grid
values generally vary within this range and only a few
grid points (about 0.6%) have values that are greater
than 10.0 kcal/mol in magnitude.
(c) Dielectric Constant. Because the similarity

index is a ratio between electrostatic potentials, the
dielectric terms simply cancel when the index is com-
puted (eq 1). Table 3c shows the variation in the
predictivity of the QSARs that used different dielectric
constants ranging from 1 (vacuum) to 80 (aqueous) in
the electrostatic potentials calculation. As expected, the
changes in cross-validated results with dielectric con-
stants are minimal, and the small observed deviations
are an artifact of the truncation cutoffs.
(ii) Similarity Index. Three other similarity indices

were investigated. They were the Carbó index (eq 1)9
and the linear and exponential indices proposed by Good
(eqs 3 and 4).11 Table 4b shows the correlation among
the four electrostatic SMs calculated with different
indices based on the same grid potentials. It suggests
that the similarity measures from these indices in a
congeneric data set are highly correlated, and not
surprisingly GNN gives comparable results when ap-
plied to the four SMs (Table 3d). There is no apparent
advantage of using one index over any other in this test
case.
(iii) Grid Parameters. (a) Spacing. The effect of

different grid spacing on the ESM/GNN QSAR was
explored. Five grids, which were approximately equal

in size and had grid spacing ranging from 0.5 to 4.0 Å,
were used in the calculation. The results are shown in
Table 3e. They indicate that a spacing of 2.0 Å is
sufficient since 0.5 or 1.0 Å gave very similar results,
in accord with an earlier study.16 Since a 2-fold decrease
in grid spacing leads to an 8-fold increase in the number
of grid points, this is important for an efficient method.
Further increase of grid spacing beyond 2.0 Å leads to
a gradual decrease in predictivity, though it is interest-
ing that a satisfactory model can still be made using a
value as large as 4.0 Å. This may be due to the long-
range nature of the electrostatic interactions.
(b) Size. A grid of size 8× 18× 8 Å3 was the smallest

rectilinear grid (with a 2.0-Å grid spacing) that con-
tained all steroid molecules. A grid size parameter, s,
was defined to give a grid that would extend beyond all
molecules by at least s Å along all axes; i.e., a grid of
dimension (8+2s) × (18+2s) × (8+2s) Å3 was used. In
the standard set of simulations, a grid size s ) 6 was
used. This ensured that the electrostatic field values
had decayed to near zero at the grid surfaces. In the
present validation, grids with s from -2 to 10 and
spacing fixed at 2.0 Å were examined. The results
shown in Table 3f indicate that the quality of the QSAR
models is insensitive to grid size, a parameter that is
often chosen arbitrarily, as long as the grid contains all
molecules, i.e., s g 0. They also suggest that the
dominant component in similarity calculations is de-
rived from the grid points closest to the molecules. It
seems reasonable because this region is where hydrogen
bonding and the strongest charge interactions take
place.
(c) Location. Another variable in any grid-based

calculation is the exact location of the rectilinear grid,
relative to the molecules. For a robust QSAR method,
the performance of the model will not depend on the
exact location of the grid, as long as all the molecules
of interest are contained in it. To monitor this effect,
the same electrostatic SM/GNN calculations were per-
formed with the grids shifted by (0.2 Å in the x-, y-,
and z-directions relative to the standard set of simula-
tions. The results in Table 3g show that the location of
the grid has little or no effect on the quality of QSAR.
(iv) Number of Similarity Descriptors in QSAR.

The effect of the number of descriptors (n) used in ESM/
GNN QSAR on the quality of model was investigated.
In the standard set of simulations, six similarity de-
scriptors were chosen by the GA and were utilized to
correlate with binding affinity using a 6-2-1 neural
network. In this test study 19 different values of n,
ranging between 1 and 31, were examined in conjunc-
tion with an n-2-1 neural network. Table 3h and Figure
3a show the cross-validation results for the various
GNN simulations. The best single-descriptor model (n
) 1) yielded a q2 value of 0.677. This mimicked the
QSAR study of a set of bisamidines by Montanari et al.,
who reported a respectable regression model using only
the Carbó index associated with the most potent ana-
logue.19 In the present study, use of additional similar-
ity descriptors led to a rapid increase in predictivity.
However, this effect leveled off at 6-8 descriptors, and
then q2 began to decrease steadily upon further increase
of n. This decline in predictivity might be due to data
overfitting associated with the use of larger neural
networks.45,46

Figure 2. q2 as a function of truncation cutoff for the
electrostatic potential calculations.
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To summarize, this part of the validation study
demonstrated that the resulting QSAR obtained from
the ESM/GNN was very robust with respect to varia
tions in most of the user-specified, and often arbitrarily
chosen, parameters. Because the various similarity
indices are highly correlated, the particular choice of
index had little influence in the resulting QSARs. The
grid-related settings such as its spacing, size, or location
had relatively little or no impact on the overall result.
In addition, the numerical values of the dielectric in the
electrostatics calculation played no role, as expected
from the functional form of the similarity index. It
appears that too small a value for the truncation cutoff
could result in very flat similarity indices. The study
of different atomic charges suggested that the MOPAC
AM1 Mulliken charges and QEq charges were suitable
for the calculations of electrostatic potentials. It was
shown that the number of descriptors had a strong effect
on the resulting QSAR models. It was important to
have enough descriptors to reflect the data but not so
many that overfitting could arise.
Variations of Parameters in Shape SM/GNN

QSAR. Similar validations were performed on the
SSM/GNN QSARs. Again three simulations were done
on the different settings of parameters. There are
considerably fewer user-adjustable parameters in this

case: they are (i) the grid parameters (spacing and
location) and (ii) the number of shape similarity de-
scriptors that are used.
(i) Grid Parameters. (a) Spacing. The effect of

different grid spacings on the calculation of the SSM/
GNN was explored. Six different spacing settings,
ranging from 0.25 to 4.0 Å, were used. Table 5a shows
the cross-validated statistics for the GNN QSARs. The
results indicate that a grid spacing between 0.25 and
1.0 Å gives similar results. However, in contrast to the
electrostatic results, when the resolution of the grid is
beyond 1.0 Å, the predictivity of resulting QSARs drops
rapidly. This is in accord with the shorter range,
steeper variation of the shape parameters.
(b) Location. An offset of (0.05 Å was applied to

the standard grid at each of the x-, y-, and z-directions.
As shown in Table 5b, none of the alternative QSAR
models had cross-validated correlation coefficients that
were significantly different than the standard simula-
tions. This result verified that the exact location of the
grid had little influence on the overall result.
(ii) Number of Similarity Descriptors in QSAR.

As for the ESM/GNN, 19 SSM/GNN simulations using
different numbers of similarity descriptors were per-
formed. The results are shown in Table 5c and also in
Figure 5b. As with the electrostatic case, the quality
of QSAR increased when more than one descriptor was
used. There was no gain in predictivity for models using
more than five similarity descriptors.
To summarize, like the previous case with electro-

static SM, the exact location of the rectilinear grid did
not appear to influence the quality of the QSAR model.
However, unlike the electrostatic case, a finer grid
between 0.25 and 1.0 Å was required. Larger grid
spacing gave inadequate shape description that subse-
quently made discrimination among molecules more
difficult. Again the number of descriptors was impor-
tant.
Combined Electrostatic and Shape SM/GNN

QSAR. We have shown that the application of GNN
to either the electrostatic or shape similarity matrix
alone leads to highly predictive QSARs. This suggested
that both electrostatic and steric factors were important

Figure 3. Variation of q2 as a function of the number of input
nodes used in the GNN simulations: (a) electrostatic similarity
matrix; (b) shape similarity matrix.

Table 5. Statistical Data for GNN QSARs Derived from Shape
Similarity Matrices

q2 q2

(a) Grid Spacing
0.25 0.828 ( 0.003 2 0.809 ( 0.011
0.50a 0.825 ( 0.013 3 0.601 ( 0.029
1 0.821 ( 0.003 4 0.359 ( 0.059

(b) Grid Shift
+x 0.838 ( 0.013 -x 0.831 ( 0.001
+y 0.822 ( 0.014 -y 0.826 ( 0.007
+z 0.847 ( 0.029 -z 0.832 ( 0.004
standarda 0.825 ( 0.013

(c) Number of Descriptors
1 0.694 ( 0.003 11 0.817 ( 0.010
2 0.789 ( 0.003 12 0.810 ( 0.019
3 0.834 ( 0.019 13 0.796 ( 0.004
4 0.833 ( 0.001 14 0.798 ( 0.004
5 0.848 ( 0.001 16 0.796 ( 0.005
6a 0.825 ( 0.013 18 0.812 ( 0.032
7 0.816 ( 0.016 20 0.802 ( 0.010
8 0.801 ( 0.009 25 0.801 ( 0.017
9 0.810 ( 0.005 31 0.716 ( 0.035
10 0.813 ( 0.007
a Standard comparison set.
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in determining the binding affinity of the steroid data
set to CBG. Consequently, an attempt was made to
improve the QSAR by using both types of information
simultaneously.
A 31 × 62 similarity matrix was constructed by

merging the electrostatic and shape similarity matrices.
With this matrix, the GNN simulation yielded a highly
predictive QSAR model using three electrostatic and
three shape descriptors. This model yielded a q2 value
of 0.941, significantly higher than those obtained by
using either electrostatic or shape descriptors alone.
Interestingly this behavior is quite different from an
earlier SM/PLS study on the same data set,14 which
reported worse results with the combined matrix than
the shape matrix alone.
Comparison of Shape and van der Waals Fields.

In this and the other SM QSAR studies, a binary shape
field is used to provide the steric description of the
ligand-receptor environment. In CoMFA, the steric
field is a numeric measure which is commonly derived
from vdW interactions between the molecules and a
methyl probe. The vdW potentials allow a softer varia-
tion in the steric field values in the regions that are close
to the molecular surfaces. In this study we investigated
whether this alternative steric field would lead to a
change in QSAR predictivity.
VSM was obtained (see Method). It was very similar

to SSM; the correlation coefficient (r2) between the two
steric matrices was 0.92. Based on 20 multiple runs,
the six-descriptor VSM/GNN simulations gave a q2
value of 0.843 ( 0.009 which was comparable with the
SSM/GNN results (q2 ) 0.825 ( 0.013). Further,
running GNN on the combined vdW and electrostatic
SM yielded a q2 value of 0.941, which was virtually the
same as the corresponding value obtained from the
combined shape and electrostatic matrix. The results
demonstrate the practical equivalence of the two steric
fields. Thus, the use of the softer vdW field, which came
at the expense of a few extra user parameters (e.g., more
vdW interaction parameters, truncation cutoff, and grid
size), does not appear to be justified, at least for the
present case.
Comparison with Other Statistical Methods.

PLS3 was performed with the combined electrostatic and
shape similarity matrix. Cross-validation was per-
formed to estimate the optimal number of components
to be used in PLS. The final model contained five
components and had a q2 of 0.707. A linear six-
descriptor genetic regression model was also developed
for comparison. Interestingly, the descriptors in this
linear model were very different from the GNN selec-
tion; i.e., there was no common descriptor in the two
sets. This model contained two electrostatic and four
shape descriptors and yielded a q2 value of 0.819. This
increase in predictivity from the PLS regression sug-
gested that a GA-based descriptor selection is more
appropriate for the analysis of similarity matrices.
Furthermore, the ability of neural networks in handling
nonlinearity implicitly54 led to better model optimiza-
tions in GNN over genetic multiple linear regression
methods. This is clear from the GNN results, relative
to the others just described.
Comparison with Other Studies. Comparison

with earliest studies had to be made with caution
because there were a number of errors in the steroid

structures.27 The earliest 3D QSAR work on this data
set was made by Cramer et al. who proposed a CoMFA
model that gave a q2 of 0.66 with the first 21 steroids.2
For comparison, they also reported a regression equa-
tion based on molar refractivity (q2 ) 0.31) as well as a
molecular shape analysis55 (q2 ) 0.56) in the same
paper. Good et al. performed PLS regression on mo-
lecular similarity matrices and obtained a QSAR with
a q2 of 0.76.14 The COMPASS program, based on an
iterative procedure to suggest bioactive conformations
and a neural network to correlate molecular surface
properties, led to a highly predictive QSAR model with
a q2 of 0.89.23 Comparative molecular similarity indices
analysis (CoMSIA), a variant of CoMFA, correlated a
combination of electrostatic, steric, and hydrophobic
“similarity” fields with binding affinity. It produced a
five-component PLS model that yielded a q2 of 0.67.24
Hahn and Rogers constructed a receptor surface model
(RSM) and built a simple QSAR equation based on just
the pseudo-drug-receptor interaction energy. Their
model gave a q2 value of 0.63.25 In a recent study,
Silverman and Platt proposed a new 3D QSAR method,
the comparative molecular moment analysis (CoMMA),
and obtained a q2 value of 0.83 for the first 21 steroids
and 0.69 for all 31.29
Wagener et al. noticed the error in the secondary

sources and recompiled the data set from the original
literature.27 They reported a QSAR model based on the
autocorrelation vector of molecular surface properties
and neural networks. Their initial 12-descriptor model
had a q2 value of 0.63 using all 31 steroids. Later, they
assumed one compound (31) as an outlier in the data
set, and upon its removal their QSARmodel had a much
higher predictive power (q2 ) 0.84).
In the current study, we obtained a substantial

improvement over the published QSARs on the data set.
By applying the GNN methodology on a combined
electrostatic and shape similarity matrix, we were able
to derive a six-descriptor QSAR model that yielded a q2
of 0.94, using the entire data set. Figure 4 shows a
scatter plot of the cross-validated CBG affinity against
the observed values for the 31 steroids. In contrast to
the results of Wagener et al., no outlier is identified.
Theoretical Basis of Similarity in QSAR. A

molecular similarity index is a different kind of QSAR

Figure 4. Plot of the cross-validated CBG affinity against the
observed values. See Chart 1 for the numbering of the 31
steroids.
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descriptor from conventional parameters (e.g., π, σ, and
MR) because it does not encode physicochemical proper-
ties that are specific to molecular substituents. The
index is derived from numerical integration and nor-
malization of the field values (eqs 1-5), and it repre-
sents a global measure of the resemblance between a
pair of molecules based on their spatial or electrostatic
attributes, or a combination of the two. The use of
molecular similarity offers a new perspective in QSAR.
Instead of a correlation between substituent properties
and activities, a similarity-based QSAR method estab-
lishes an association between global properties and
activity variation among a series of molecules. The
implicit assumption is that globally similar compounds
have similar activities.8 To test this, we calculated the
Pearson correlation coefficient (r) between similarity
descriptors and activity for the steroid data set. The
coefficient is plotted against the activity of the com-
pound with which the similarity index is associated
(Figure 5). The plot shows that all of the most active
compounds have a large positive correlation and the
majority of the least active ones have an anticorrelation.
The positive correlation is, of course, the impetus for
computer-assisted lead finding and optimization in drug
design.
The above analysis provides the basis for discussing

the selection of descriptors in the GNN QSAR. Six
descriptors were obtained as optimal from the final
application of GNN on the combined electrostatic and
shape SM. They were 4, 7, and 31 for the electrostatic
similarity, and 10, 15, and 26 for the shape. A func-
tional dependence plot for these six descriptors is shown
in Figure 6, which was made by keeping all but one of
the similarity descriptors fixed at a constant value (0.5)
while scanning the variation in the binding affinity with
respect to changes in one descriptor.22,46 It was not
surprising to see compounds were predicted to have high
CBG binding affinity when they were structurally
similar to 7 or 10, which are two of the more active
compounds in the data set. Similarly, binding affinity
of a compound decreased if it was close to either 15, 26,
or 31, three compounds with rather low binding affinity.
However, it came as an initial surprise to see that

compound 4, a compound with relatively low binding
affinity, had a positive slope in the dependence plot.
Examination of the electrostatic similarity matrix re-
vealed the following: the two compounds most similar
to 4 (21 and 23) had fairly high binding affinity, and
the five most dissimilar compounds (2, 3, 13, 17, and
18) bound to CBG very weakly. This may also be
elucidated at a structural level. Compound 4, despite
its low activity, contains both a 3-oxo group and a ∆4

double bond, which are two of the essential features for
optimal binding.56-59 The presence of these structural
features in the congeners most similar to 4 and the
absence in the least ones seems to be the basis of the
present similarity-activity relation.
Consistency with Established SAR. In this sec-

tion we demonstrated that the final SM/GNN QSAR
model with both electrostatic and steric properties was
consistent with the known facts on the steroid-CBG
interactions.56-59 Previous SAR analysis on this data
set revealed that the carbonyl groups at both C3 and
C20 were essential for optimal binding, whereas the
introduction of a carbonyl group at C11 decreased the
binding affinity. It also was suggested that a hydroxyl
group at the 11â, 17R, or 21 position did not affect
binding significantly, though such a group at the 11R
position would weaken binding (see Table 6 for number-
ing). A hydroxyl group was also found to impair binding
at the following positions: 6R, 6â, 11R, 12R, 14R, 16R,
and 19. The introduction of a methyl group decreased
binding in the 6R and 16R positions, though less so than
a hydroxyl group would. The methyl group at the axial
10â position was important for optimal binding, pre-
sumably through some favorable van der Waals interac-
tions with the receptor. Reduction of the ∆4 double bond
could lead to either cis- or trans-dihydro compounds, and
both derivatives had a similar decrease in CBG affinity
relative to the parent molecule. A 9R-fluoro group was
found to weaken binding significantly.25

A straightforward way to test the ability of the SM/
GNN QSAR to account for the above SAR was to use a
model compound and make structural modifications in
accord with the above observations. We then ran the
new analogues through the QSAR model to obtain the
changes in predicted binding associated with any par-

Figure 5. Correlation coefficient (r) between similarity
descriptor and activity plotted against the activity of the
compound providing the descriptor: (+) electrostatic similarity
descriptor; (O) shape similarity descriptor.

Figure 6. Functional dependence for the three electrostatic
and three shape similarity descriptors (see text).
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ticular structural perturbation. 19 was chosen as the
model template because it could be transformed readily
to the structural analogues of interest. Table 6 shows
the structural changes of 19 required to make these new
analogues together with their predicted binding affinity.
It is evident that the SM/GNN predictions are consistent
with most of the known SARs.

An additional analogue was made to test whether the
decrease in binding affinity for the 9R-fluoro derivative
54 (predicted affinity ) 5.46) was due largely to
unfavorable electrostatic interactions with the receptor,
as suggested by the receptor surface model.25 A 9R-
methyl derivative (55) was made from 19, and its
binding affinity was predicted at 7.43 with the SM/GNN.
This result seemed to suggest that a bulky hydrophobic
group at this position did not affect binding whereas a
small polar group had a prominent effect.

IV. Concluding Discussion

A QSAR approach applying a genetic neural network
(GNN) based on molecular similarity matrices (SM) has
been described. In this initial application, the affinity
of a well-studied set of CBG-binding steroids was
examined. Excellent correlation and prediction were
obtained from the use of either an electrostatic or a
shape matrix alone, though the inclusion of both factors
improved the quality of the QSAR. The result of the
randomization test indicated that the predictivity of
these models is statistically significant. Since the SM/
GNN contains a number of user-defined parameters,
tests were made to determine optimal values.
The combined SM/GNN QSAR model has been com-

pared to those derived from statistical analysis using
PLS and genetic regression methods. It was found that
models with variable selection based on a genetic
algorithm give better results. Furthermore, the benefit
of using a nonlinear method, such as a neural network,
in a complex modeling problem was evident. The GNN
result was also compared to the benchmarks obtained
by other 3D QSAR methods.
The basis for the similarity-based QSARs was dis-

cussed, and it was concluded that the essential element
is the simple fact that globally similar compounds have
similar activities. We also showed that the SM/GNN
QSAR was consistent with the known SAR for CBG-
steroid binding.
The SM/GNNmethod is not without its shortcomings.

For example, the model is more difficult to interpret
because conventional 2D descriptors are not involved
in the modeling, its generation is computationally
intensive, and its quality is dependent on a good
molecular alignment. The other 3D QSAR techniques
have much to offer, though most of them also require
alignment. CoMFA and CoMSIA provide a convenient
visual analysis based on the property contour maps in
the important interaction regions. Performing PLS
regression on similarity matrices is computationally
inexpensive. The COMPASS program gives good sta-
tistics and offers an automatic way to suggest bioactive
conformations and pick an alignment. The RSM ap-
proach leads to a simple regression equation that is easy
to interpret and gives clues to the putative receptor
environment. The use of autocorrelation vectors and
molecular quadrupolar moments as descriptors is in-
novative, and these approaches can be especially useful
in cases where the exact molecular alignment is far from
obvious. We believe that by combining the important
attributes of different 3D QSAR methods new insight
can be sought and rapid progress will be made.
To demonstrate the general utility of the new SM/

GNN approach, additional applications of this method
have been made on eight data series. This study is
reported in the companion paper.13
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Table 6. Consistency with the Established SAR

no.
modification

on 19
predicted
affinity

comparing to 19, SAR
suggests that binding
affinity of the modified

analogue will be: resulta

19 7.45
32 3-dihydro 4.90 lower x
33 3â-OH 5.06 lower x
34 3R-OH 4.87 lower x
35 20-dihydro 6.62 lower x
36 20â-OH 7.15 lower x
37 20R-OH 6.98 lower x
38b 11-oxo 6.45 lower x
39 11â-OH 7.71 similar x
40b 17R-OH 6.95 similar x
41b 21-OH 7.69 similar x
42 11R-OH 6.72 lower x
43 6â-OH 7.64 lower ?
44 12R-OH 5.90 lower x
45 14R-OH 6.04 lower x
46 19-OH 7.18 lower ?
47 16R-OH 7.15 lower x
48 6R-OH 6.35 lower x
49b 16R-CH3 7.51 lower, but higher than 47 ? x
50 6R-CH3 7.46 lower, but higher than 48 ? x
51b nor-19 7.15 lower x
52 5â-H

(∆4 reduction)
6.52 lower x

53 5R-H
(∆4 reduction)

6.85 lower, and similar to 52 x x

54 9R-F 5.46 lower x
55 9R-CH3 7.43

a A significant change in predicted affinity (PA) is defined by a
shift of more than 0.3 log unit, which is approximately 10% of the
activity range of the data set. For an analogue X that is suggested
to have a lower binding affinity than Y by SAR, the corresponding
GNN prediction is considered consistent (x) if PAx - PAy < -0.3;
inconsistent (x) if PAx - PAy > 0.3; and inconclusive (?) if |PAx -
PAy| e 0.3. For an analogue X whose binding affinity is suggested
to be similar to that of Y by SAR, the GNN prediction is considered
consistent (x) if |PAx - PAy| e 0.3; and inconsistent (x) if |PAx -
PAy| e 0.3. b Five of the modified analogues can be found in the
training set (38 ) 24; 40 ) 20; 41 ) 10; 49 ) 28; 51 ) 29). To
avoid duplication, their predicted affinities were taken from cross-
validated predictions.
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